Cloning and Sequence Analysis of the 22-kDa Antigen Genes of *Orientia tsutsugamushi* Strains Kato, TA763, AFSC 7, 18-032460, TH1814, and MAK 119

HONG GE, a MIN TONG, a ANDREW LI, b RAJAN MEHTA, b AND WEI-MEI CHINGa

^aRickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910, USA

^bThomas Jefferson High School for Science and Technology Mentorship Program, Alexandria, Virginia 22312, USA

ABSTRACT: The 22-kDa protein antigen is one of several antigens recognized by sera from scrub typhus patients infected with *Orientia tsutsugamushi*. The 22-kDa protein genes from six *O. tsutsugamushi* strains (Kato, TA763, AFSC 7, 18-032460, TH1814, MAK119) were cloned and their sequences were determined and compared to each other and to the Karp strain sequence listed in GenBank. The sequence alignment revealed that the promoter regions of these seven strains were highly conserved. However, the ORFs exhibited some variation. The phylogenetic analysis of the DNA sequences indicated that among the seven strains assessed, Kato and TA763 were the most closely related, while Karp and TH1814 were the most distantly related. The information gained from this analysis will facilitate our selection of *O. tsutsugamushi* strains from which antigens should be derived to be included in a multivalent vaccine candidate for scrub typhus.

KEYWORDS: Orientia tsutsugamushi; scrub typhus; 22-kDa antigen; vaccine

INTRODUCTION

Many different serotypes of *Orientia tsutsugamushi*, the causative agent of scrub typhus, have been documented. The identification of protective antigens, which may be responsible for the different serotypes, is crucial to the understanding of homotypic and heterotypic immunity to *O. tsutsugamushi* and to the development of a scrub typhus vaccine. Western blot analysis of *O. tsutsugamushi* cell lysates with patient sera has identified at least five protein antigens of molecular mass 110, 56, 47, 35, and 22 kDa. Among these antigens, the variable 56-kDa protein antigen is the most

Address for correspondence: Dr. Hong Ge, Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910, USA. Voice: 301-319-7439; fax: 301-319-3015.

geh@nmrc.navy.mil

Disclaimer: This work was supported by Work Unit Number A0311. The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government.

Ann. N.Y. Acad. Sci. 1063: 231-238 (2005). © 2005 New York Academy of Sciences. doi: 10.1196/annals.1355.036

maintaining the data needed, and of including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate or mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 2005		2. REPORT TYPE N/A		3. DATES COVERED -	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Cloning and Sequence Analysis of the 22-kDa Antigen Genes of Orientia tsutsugamushi Strains Kato, TA763, AFSC 7, 18-032460, TH1814, and			5b. GRANT NUMBER		
MAK 119				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Rickettsial Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
Naval Medical Research Center 503 Robert Grant Avenue Silver Spring, MD 20910-7500				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	SAR 8		

Report Documentation Page

Form Approved OMB No. 0704-0188 abundant and is recognized by almost all scrub typhus patients' sera. The 47-kDa antigen is believed to be the most conserved antigen, while the 56-kDa and 110-kDa protein antigens exhibit considerable variations. The sequences of 22-kDa antigens are not available from strains other than prototype Karp strain.

It has been shown that the 22-kDa protein contains B- and T- cell epitopes and that a recombinant 22- kDa protein could induce antigen-specific proliferation of T-cells from mice immunized with whole cell *O. tsutsugamushi*. Many studies have demonstrated that protective immunity to scrub typhus is led by specific T cells; especially Th1 cells. These results suggest that it may be beneficial to include 22-kDa antigen in a multicomponent vaccine candidate. Therefore, we amplified 22-kDa genes from six strains (Kato, TA763, AFSC 7, 18-032460, TH1814, MAK119) and compared their sequences to each other and to that of the Karp strain. The information obtained in this study from the different strains will facilitate our selection of strains to be included in the development of a multivalent vaccine against scrub typhus.

MATERIALS AND METHODS

Purification of Genomic DNA, PCR Amplification, Cloning and Fast-Screening of the 22-kDa Gene

The genomic DNAs were purified from *O. tsutsugamushi*—infected mouse spleens. Cell pellet was resuspended in ATL lysis buffer (Qiagen, Valencia, CA). After proteinase K digestion and RNase treatment according to manufacturer instructions, DNA was extracted by phenol-chloroform-isoamyl alcohol three times and precipitated with ethanol-sodium acetate. Purified *O. tsutsugamushi* genomic DNAs from six strains (Kato, TA763, AFSC 7, 18-032460, TH1814, MAK 119) were used as templates for PCR. The primers were designed for amplification of the entire 22-kDa gene based on the published sequence of Karp strain (forward: 5′ TAA GTC GAC ATA CTA TAT CAT CTA CAC AGA AGT TG 3′ and reverse: 5′ TAA GGC ATA TGT ATT CTA CTA TAG CTT GGG GT 3′). The PCR yielded a 1,211 bp fragment that was cloned into pPCR-Script Amp SK+ vector and the positive clones were selected with the Epicentre® Colony Fast-ScreenTM Kit (Madison, WI).

Sequencing, Sequence Alignment, and Phylogenetic Analysis of the Amplified 22-kDa Gene

The positive clones were sequenced on the ABI 370 analyzer (Foster City, CA). The inserted sequences from three colonies of each strain were determined. The chromatography was manually examined to resolve any discrepancies in sequencing. The confirmed sequences of six strains were aligned for comparison with that of the Karp strain and phylogenetic trees were constructed by CLUSTALW comparison (version 1.82).

RESULTS

Sequence alignment of seven 22-kDa genes (six determined in this study and the published sequence of Karp strain) demonstrated that the promoter regions were

```
TAAGTCGACATACTATATCATCTACACAGAAGTTGAGTAAAAAATTGCAGCTATGTATTT 60
Kato
TA763
                 TAAGTCGACATACTATCATCTACACAGAAGTTGAGTAAAAAGCTACAGCTATGTATTT 60
AFSC7
                TAAGTCGACATACTATATCATCTACACAGAAGTTGAGTAAAAAACTGCAGCTATGTATTT 60
               TAAGTCGACATACTATATCATCTACACAGAAGTTGAGTAAAAAACTGCAGCTATGTATTT 60
TAAGTCGACATACTATATCATCTACACAGAAGTTGAGTAAAAAGCTACAGCTATATATTT 60
Karp
18-032460
                TAAGTCGACATACTATATCATCTACACAGAAGTTGAGTAAAAAAACTGCAGCTATGTATTT 60
TH1814
MAK119
                TAAGTCGACATACTATACCATCTACACAGAAGTTGAGTAAAAAACTGCAGCTATGTATTT 60
                 ************
               CATTAGCAACTTTTATATTACGTTGCATCCTATATGCTTCACGATTAAAAATATAATTCA 120
CATTAGCAACTTTTATATTACGTTGCATCCTATATGCTTCACGATTAAAAATATAATTCA 120
CATTAGCAACTTTTATATTACGTTGCATCCTATATGCTTCACGATTAAAAATATAATTCA 120
Kato
TA763
AFSC7
Karp
18-032460
                CATTAGCAACTTTTATATTACGTTGCATCCTATATGCTTCACGATTAAAAATATAATTCA 120
                CATTAGCAACTTTTATATTACGTTGCATCCTATATGCTTCACGATTAAAAATATAATGCA 120
                CATTAGCAACTTTTATATTACGTTGCATCCTATATGCTTCACGATTAAAGATATAATTCA 120
TH1814
MAK119
               CATTAGCAACTTTTATATTACGTTGCATCCTATATGCTTCACGATTAAAAATATAATTCA 120
                TAGCCTGTTTTAATA-TTTAGCTAACTAAAAGAAATATTTTGTAAGATAATACAGTATAT 179
Kato
                TAGCCTGTTTTAATA-TTTAGCTAACTAAAAGAAATATTTTGTAAGATAATACAGTATAT 179
TA763
AFSC7
                 TAGCCTGTTTTAATA-TTTAGCTAACTAAAAGAAATATTTTGTAAGATAATACAGTATAT
                TAGTCTGTTTTAATA-TTTAGCTAACTAAA-GAAATATCCTGCAAGATAATACAGTATGT 178
Karp
               TAGTCTGTTTTAATAATTTAGCTAACTAAA-GAAATATCTTGCAAGATAATACAGTATAT 179
18-032460
TH1814
MAK119
                 TAGCCTGTTTTAATA-TTTAGCTAACTAAAAGAAATATTTTGTAAGATAATATAGTATAT
               TAGCCTGTTTTAATA-TTTAGCTAACTAAAAGAAATATTTTGTAAGATAATACAGTATAT 179
                 GTATAATCATGATATATGATAGAGGATCAATACAACTGAAACAATATTAGTTATTGATAA 239
Kato
            GTATAATCATGATATATGATAGAGGATCAATACAACTGAAAC<u>AATATTAGTTATTGATAA</u> 239
TA763
AFSC7
                GTATAATCATGATATATGATAGAGGATCAATACAACCGAAACAATATTAGTTATTGATAA 239
GTATAATCATGATATATGATAAATGATCAATATAACTGAAATAATATTAGTTATTGATAA 238
Karp
18-032460 GTATAATTATTATATGTGATAGAGTATCAATACAATTGAAATAATATTAGTTATTGATAA 239
TH1814
                GTATAATCATGATATATGATAGAGGATCAATACAACTGAAACAATATTAGTTATTGATAA 239
GTATAATCATGATATATGATAGAGGATCAATACAACTGAAACAATATTAGTTATTGATAA 239
MAK119
                CTGCATAATATTTAAGTATATTTTAAGTATATACTAATATTATAAGGAATTATCTTTATG 299
Kato
TA763
AFSC7
                 CTGCATAATATTTAAGTATATTTTTAAGTATTACTAATATTATAAGGAATTATCTTTATG 299
Karo
                 CTGCATAATATTTAAGTATATTTTTAAGTATTACTAATATTATAAGGAATTATCTTTATG 298
18-032460
                CTGCATAATATTTAAGTATATTTTTAAGTATTACTAATATTATAAGGAATTATCTTTATG 299
TH1814
MAK119
                 CTGCATAATATTTAAGTATATTTTTAAGTATTACTAATATTATAAGGAATTATCTTTATG 299
                 CTGCATAATATTAGAGTATATTTTTAAGTATTACTAATATTATAAGGAATTATCTTTATG 299
                AGTAAAGAAGCAACAGAACTCAAAGAAAATATGAATAAAGCAATGGAGTCTGCATCGCAA 359
Kato
               AGTAAAGAAGCAACAGAACTCAAAGAAATATGAATAAGCAATGGAGTCTGCATCGCAA 359
AGTAAAGAAGCAACAGAACTCAAAGAAAGTATGGATCAAGCAATGAAGTCTGCATCGCAA 359
TA763
               AGTAAAGAAGCAACAGAACTCAAAGAAAGTATGAATCAAGCAATGAAGTCTGCATCGCAA 358
AGTAAAGAAGCAACAGAACTCAAAGAAAGTATGGATCAAGCAATGAAGTCTGCATCGCAA 359
AGTAAAGAAGCAACAGAACTCCAAAGAAAATATGAATAAAGCAATGGAGTCTGCATCCCCAA 359
Karp
18-032460
TH1814
               AGTAAAGAAGCAACAGATCTCAAAGAAAATATGAATAAAGCAATGGAGTCTGCATCCCAA 359
MAK119
                 **********************
Kato
               AATTCAAGTATTTCAGCTGAACAAAATTACAACTTGAAAACGAAAAAAAGGAACTGCAA 419
               AATTCAAGTATTTCAGCTGAACAAAAAGCACACTTGAAAATGAAAAAAAGGAACTGCAA 419
AATTCAAGTATTTCAGCTGAACAAAAATTACAACTTGAAAAAGGAAAAAAAGGAACTGCAA 419
TA763
AFSC7
                AATTCAAGCATTTCAGCTGAACAAGATCACAACTTGAAAAAGGAAAAAAAGGAACTGCAA 418
                AATTCGAGTATTTCAGCTGAACAAAATTACAACTTGAAAACGAAAAAAAGGAACTGCAA 419
18-032460
TH1814
                AGTTCAAGCCTTTCAGCTAAACAAAGATCAGAACTTGAAACTGAAAAAAATGAACTGCAA 419
MAK119
```

FIGURE 1. The alignment of 22-kDa genes from seven *O. tsutsugamishi* strains.

Kato

GGACAAATTAGCGATATTACTGGAAAAGATGAACAATCTCAACAAACTACAATGGATAAA 479

```
TA763
              GGCCAAATTAGCGATATTGCTGGAAAAGATGAACAAACCCAACAAACTACAATGGATAAA 479
AFSC7
              GGCCAAATTGGCGATATCACTGGGAAAGATGAACAAACCCAACAAACTACAATGAATAAA 479
Karp
              GGCCAAATTGGCGATATCACTGGGAAAGATGAACAAACCCAACAAACTACAATGAATAAA 478
18-032460
             GGCCAAATTGGCGATATCACTGGGAAAGATGAACAAACCCAACAAACTACAATGAATAAA 479
TH1814
              AGCCAAATTAGCGCTATTACTGGAAAAGATAAACAATCTCAAGAAACTACAATGGCTAAA 479
MAK119
              AGCCAAATTAGCGCTATTACTGGAAAAGATAAACAATCTCAAGAAACTACAATGGCTAAA 479
                                **** ***** **** * *** ****
Kato
              TTGAAAGAATGGATGTTAAAGATCAAGGAATTTATCACAAGTAAGGATTTTTCAGAGCTA 539
              TTAAAAGAATGGATGTTAAAGATCAAGGAATTTATCACAAGTAATGATTTTTCAAAGCTA 539
TA763
AFSC7
              TTAAAAGAATGGATGTTAAAGATCAAGGATTTTCTTACAAGTGATGATTTTTCAAAGCTA 539
Karp
              TTAAAAGAATGGATGTTAAAGATCAAGGATTTTCTTATAAGTGATGATTTTTCAAAGCTA 538
18-032460
               TTAAAAGAATGGATGTTAAAGATCAAGGATTTTCTTACAAGTGATGATTTTTCAAAGCTA 539
TH1814
              TTGAAAGAATGGATGTTAAAGATCAAGGAATTTATTACAAGTCAGGATTTTTCCAATCTA 539
MAK119
             TTGAAAGAATGGATGTTAAAGATCAAGGAATTTATTACAAGTCAGGATTTTTCCAATCTA 539
              Kato
             GTAGATAGCGTAGTAAAATTTGTACAAACTGCAGTCAAAGTTTCCACAGAAATGGCACAA 599
TA763
             GTAGATAGCGCAGTGCAATTTGTACAAACAGCAGTCAAAGTTTCCGCAGAAATGGTGCAG 599
AFSC7
              GTAGATAGCGCAGTAAAATTTGTACAAACTGCAGTTAAGGTTTCCACAGAAATGATGCAG 599
Karp
              GTAGATAGCGCAGTAAAATTTGTACAAACTGCAGTTAAGGTTTCCACAGAAATGATGCAG 598
              GTAGATAGCGCAGTAAAATTTGTACAAACTGCAGTTAAGGTTTCCACAGAAATGATGCAG 599
18-032460
TH1814
             GTAGATAGTGCAGTAAAATTTGTACAAACTGCAGTTAAGGTCTCTACAGAAATGATGAAG 599
MAK119
              GTAGATAGTGCAGTAAAATTTGTACAAACTGCAGTTAAGGTCTCTACAGAAATGATGAAG 599
                             **********
              GCCTTTACAGGCATGAAAGATAAAGGAATAATGGGAGTAGCTGCAGGCATACAAACTGTT 659
Kato
TA763
              GCTTTTACAGGCATGAAAGAGAAAGGAATAATGGGTGTAGCTGCAGGCATAAAAACTGTT 659
              GCCTTTACAGGCATGAAAGAAAAGGAATAATGGGTGTAGCTGCAGGCATACAAACTGTT 659
AFSC7
              GCCTTTACAGGCATGAAAGAAAAGGAATAATGGGTGTAGCTGCAGGCATACAAACTGTT 658
Karp
18-032460
             GCTTTTACAGGCATGAAAGAGAAAGGAATAATGGGAGTAGCTGCAGGAATACAAACTGTT 659
TH1814
              GCTTTTACAGGCATGAAAGAAAAGGAATAATGGGTGTAGCTGAAGGCATACAAACTGTT 659
MAK119
              GCTTTTACAGGCATGAAAGAGAAAGGAATAATGGGTGTAGCTGAAGGCATACAAACTGTT 659
              ** ************ ******* ****** ***** *** *** ***
              ACTAGTGGATTCCAAGATATAACCCAAGGTGTGAGCAAGATGGTTGAAGCTGGAGAAGCA 719
Kato
TA763
              ACTAGTGGATTCCAAGATATAACCCAAGGTGTGAGCAGGATGGTTGAAGCTGGAGAAGCA 719
              ACTAGTGGATTTCAAAATATAACACAAGGGGTGAGCAATATGATTGAAGCTGGAGAAGCA 719
AFSC7
             ACTAGTGGATTTCAAAATATAACACAAGGGGTGAGCAATATGATTGAAGCTGGAGAAGCA 718
Karp
             ACTACTGGATTCCAAAGTATAACCCAAGGTGTGAGCAATATGATTGAAGCTGGAGAAGCA 719
18-032460
TH1814
              ACTACTGGATTCCAAAGTATAACCCAAGGTGTGAGCAATATGATTGAAGCTGGAGAAGCA 719
MAK119
              ACTACTGGATTCCAAAGTATAACCCAAGGTGTGAGCAATATGATTGAAGCTGGAGAAGCA 719
              **** ***** ***
                              *****
                                                  *** ***********
Kato
              TA763
              GCAGCAAAGCACTTTTCTTCTTCTGGAGATAAAAT---AAAAGAAATTTTAGGAGCAGAG 776
AFSC7
              GCAGTAAAACACTTTTCTTCTCCTAGAGATAAAAT---AAAAGAAGCTTTAGGAGCAGAA 776
Karp
              GCAGTAAAACACTTTTCTTCTCCTAGAGATAAAAT---AAAAGAAGCTTTAGGAGCAGAA 775
18-032460
              GCAGCAAAGCACTTTTCTTCTCCTGGCGATAAAAT---AAAAGAAGCTTTAGGAGCAGAG 776
              GCAGCAAAGCACTTTCTCTCCTGGCGATAAAAT---AAAAGAAGCTTTAGGAGCAGAG 776
TH1814
MAK119
              GCAGCAAAGCACTTTTCTTCTCCTGGCGATAAAAT---AAAAGAAGCTTTAGGAGCAGAG 776
               **** *** ******** ** * ****
```

FIGURE 1 — continued.

```
GGATTAGCTAAACTTCAAGCTGCTAGCGCTGGATTACAAAATAATGCTAGTATAGCATCA 839
Kato
             GGATTAGCTAAACTTCAAGCTGCTAGCGCTGGATTACAGAGTAATGCTAGTATAGCATCA 836
            GGACTAGCTAAACTTCAAGCTGCTAGCGCTGGATTACAAAATAATGCTAGTATAGCATCA 836
AFSC7
            GGATTAGCTAAACTTCAAGCTGCTAGCGCTGGATTACAAAATAATGCTAGTATAGCATCA 835
Karp
            GGACTAGCTAAACTTCAAGCTGCTAGCGCTGGATTACAAAGTAATGCTAGTATAGCATCA 836
18-032460
TH1814
             GGACTAGCTAAAACTTCAGCTGCTAGTGCTGGATTACAAAATAATGCTAGTATAGCATCA 836
MAK119
            GGACTAGCTAAACTTCAAGCTGCTAGTGCTGGATTACAAAATAATGCTAGTATAGCATCA 836
                            ******* ******* * ********
Kato
             CCTTCAGCTAGTAGTGTATCAACTCCAACAGCAGCGCGC-----ACACAACAGAAAGAC 893
TA763
            CCTTCAGCTAGTAGTGTATCAACTCCAACAGCAGCGCGCTCAACAACACCACAGAAAGAC 896
AFSC7
             TCTTCAGCTAGT---GTATCAACTCCAACAGCAGCACGC-----CCACAACAGAAAGAC 887
             TCTTCAGCTAGT---GTATCAACTCCAACAGCAGCGCGC-----ACACAACAGAAAGAC 886
Karp
           TCTTCAGCTAGT---GTATCAACTCCAACAGCAGCACCGCTCC---CCACAACAGAAAAGAC 890
18-032460
            TCTTCAGCTAGT---GTATCAACTCCAACAGCAGCACGT-----ACACAACAGAAAGAC 887
TH1814
            TCTTCAGCTAGT---GTATCAACTCCAACAGCAGCACGT-----ACACAACAGAAAGAC 887
MAK119
                           stop
           ---TCTATAGCAAGATAAAACA-GTATGATAACACTAGAATAGGATAATTTTAAGCGTGT 94 9
AGTTCTATAGCAAGATAAAACA-GTATTATAACACTAGGATAGGATAATTTTAAGCGTGT 95 5
---TCTATAGCAAGATAAAACAAGTATTCTAACGCTAGAATAGAATAATTTTAAGCGCGT 94 4
Kato
TA763
AFSC7
            AGTTCTATAGCAAGATAAAACA-GTATTATAACGCTAGAATAGAATAATTTTAAGCGCGT 945
Karp
Karp
18-032460 ---TCTATAGCAAGATAAAACA-GTATGATAACACTAGAATAGGATAATTTTAAGGGIGI 946
MAK119 AGTTCTATAGCAGGATAAAACA-GTATGATAACACTAGAATAGGATAATTTTAAGCGTGT 946
MAK119 AGTTCTATAGCAGGATAAA-CA-GTATGATAACACTAGAATAGGATAATTTTAAGCGTGT 945
Kato
            TAGCCAAGAAAAAGAAAA---AACAGATATAAGAAAAAATTAAGTTTAAAGT-TAAAA 1005
TA763
             TTG-----AGAGAAAAA---CATAGATATAAGAAAAAATTAAGTTTAAAGTCTAAAA 1005
             AFSC7
             GTTAGCGAAGAAAAAAA--ACATAGATATAAGAAAAAATTAAGTTTAAAGT-TAAAA 1002
Karp
18-032460
            TT-----GAGAAAAA---CATAGATATAAGAAAAAATTAAGTTTAAAGT-TAAAA 993
18-002
TH1814
             TG-----GAGAAAAA---CATAGATATAAGAAAAATTAAGTTTAAAGT-TAAAA 993
            TG-----GAGAAAAA---CATAGATATAAGAAAAATTAAGTTTAAAGT-TAAAA 992
                                 * ****** ***
                          ****
             Kato
             TA763
AFSC7
             Karp
           18-032460
            TH1814
            MAK119
               **************
Kato
             TAAGTATAAAGGATACTTTTGCTTACCCCAAGCTATAGTAGAATAATACATATGCCTTA 1124
TA763
             TAAGTATAAAGGATACTTTTGCTTACCCCAAGCTATAGTAGAATAATACATATGCCTTA 1124
             TAAGTATAAAGGATACTTTTGCTTACCCCAAGCTATAGTAGAATAATACATATGCCT-- 1120
AFSC7
             TAAGTATAAAGGATACTTTTGCTTACCCCAAGCTATAGTAGAATAATACATATGCCTTA 1121
Karp
18-032460 TAAGTATAAAGGATACTTTTGCTTACCCCAAGCTATAGTAGAATAATACATATGCCTT- 1111
TH1814
             TAAGTATAAAGGATACTTTTTCTTACCCCAAGCTATAGTAGAATAATACATAT-CCTTA 1111
MAK119
             TAAGTATAAAGGATACTTTTGCTTACCCCAAGCTATAGTGGAATAATACATATGCCTTA 1111
```

FIGURE 1 — continued.

highly conserved, while the open reading frames (ORFs) showed sequence variations scattered all over the region (Fig. 1). In the promoter regions, the different strains' upstream sequences between -1 to -75 bp before the ATG start codon were almost identical except for two nucleotides of MAK119 (242, 243) and one nucleotide of TA763 (261). However, there were quite a lot of single nucleotide differences throughout the entire ORF among these seven strains. In addition, there were five triple nucleotide insertions or deletions within the 150 bp region before the stop codon relative to Karp 22-kDa sequence. Using the Karp strain sequence as the reference, percentages of sequence homology observed among these strains if the insertions and deletions were not counted were as follows: AFSC7, 99.46%; 18-032460, 98.13%; TA763, 96.25%; Kato, 96.07%; MAK119, 95.27%; TH1814, 95.18%. The alignment for the deduced protein sequences of seven strains was performed as well (Fig. 2). Although amino acid variations were found scattered throughout the whole ORF, the results indicated that the 22-kDa protein is relatively conserved. Their relationships to Karp strain were similar to those seen in DNA sequence comparisons. The percentages of protein sequence homology among these

Kato	MSKEATELKENMNKAMESASQNSSISAEQKLQLENEKKELQGQISDITGKDEQSQQTTMD
TA763	MSKEATELKENMNKAMESASQNSSISAEQKAQLENEKKELQGQISDIAGKDEQTQQTTMD
AFSC7	MSKEATELKESMDQAMKSASQNSSISAEQKLQLEKEKKELQGQIGDITGKDEQTQQTTMN
18-032460	MSKEATELKESMDQAMKSASQNSSISAEQKLQLENEKKELQGQIGDITGKDEQTQQTTMN
TH1814	MSKEATDLKENMNKAMESASQSSSLSAKQRSELETEKNELQSQISAITGKDKQSQETTMA
MAK119	MSKEATDLKENMNKAMESASOSSSLSAKOKSELETEKNELOSOISAITGKDKOSOETTMA
Karp	MSKEATELKESMDOAMKSASONSSISAEORSOLEKEKKELOGOIGDITGKDEOTOOTTMN
•	*************************************
Kato	KLKEWMLKIKEFITSKDFSELVDSVVKFVQTAVKVSTEMAQAFTGMKDKGIMGVAAGIQT
TA763	KLKEWMLKIKEFITSNDFSKLVDSAVQFVQTAVKVSAEMVQAFTGMKEKGIMGVAAGIKT
AFSC7	KLKEWMLKIKDFLTSDDFSKLVDSAVKFVQTAVKVSTEMMQAFTGMKEKGIMGVAAGIQT
18-032460	KLKEWMLKIKDFLTSDDFSKLVDSAVKFVQTAVKVSTEMMQAFTGMKEKGIMGVAAGIQT
TH1814	KLKEWMLKIKEFITSQDFSNLVDSAVKFVQTAVKVSTEMMKAFTGMKEKGIMGVAEGIQT
MAK119	KLKEWMLKIKEFITSQDFSNLVDSAVKFVQTAVKVSTEMMKAFTGMKEKGIMGVAEGIQT
Karp	KLKEWMLKIKDFLISDDFSKLVDSAVKFVQTAVKVSTEMMQAFTGMKEKGIMGVAAGIQT

Kato	VTSGFQDITQGVSKMVEAGEAAVKHFSSSGDKMGKKFLGAEGLAKLQAASAGLQNNASIA
TA763	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA
TA763 AFSC7	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA
TA763 AFSC7 18-032460	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA
TA763 AFSC7 18-032460 TH1814	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKTSAASAGLQNNASIA
TA763 AFSC7 18-032460 TH1814 MAK119	VTSGFÖDITÖGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLÖSNASIA VTSGFÖNITÖGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTGFQSITÖGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITÖGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKTSAASAGLQNNASIA VTTGFQSITÖGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA
TA763 AFSC7 18-032460 TH1814	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA
TA763 AFSC7 18-032460 TH1814 MAK119	VTSGFÖDITÖGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLÖSNASIA VTSGFÖNITÖGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTGFQSITÖGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITÖGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKTSAASAGLQNNASIA VTTGFQSITÖGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA
TA763 AFSC7 18-032460 TH1814 MAK119 Karp	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKTSAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA ***********************************
TA763 AFSC7 18-032460 TH1814 MAK119 Karp	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPDKI-KEALGAEGLAKTSAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTSGFQNITQGVSNMIEAGEAAVKHFSSPDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA **:**********************************
TA763 AFSC7 18-032460 TH1814 MAK119 Karp	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAAKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA **:*** *******************************
TA763 AFSC7 18-032460 TH1814 MAK119 Karp Kato TA763 AFSC7	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAAKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA **:**********************************
TA763 AFSC7 18-032460 TH1814 MAK119 Karp Kato TA763 AFSC7 18-032460	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA **:***.******.************************
TA763 AFSC7 18-032460 TH1814 MAK119 Karp Kato TA763 AFSC7 18-032460 TH1814	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKTSAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKTSAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA **:***.*******************************
TA763 AFSC7 18-032460 TH1814 MAK119 Karp Kato TA763 AFSC7 18-032460 TH1814 MAK119	VTSGFÖDITÖGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFÖNITÖGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITÖGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITÖGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTTGFQSITÖGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITÖGVSNMIEAGEAAAKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITÖGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA **:*** *******************************
TA763 AFSC7 18-032460 TH1814 MAK119 Karp Kato TA763 AFSC7 18-032460 TH1814	VTSGFQDITQGVSRMVEAGEAAAKHFSSSGDKI-KEILGAEGLAKLQAASAGLQSNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKLQAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKTSAASAGLQSNASIA VTTGFQSITQGVSNMIEAGEAAAKHFSSPGDKI-KEALGAEGLAKTSAASAGLQNNASIA VTTGFQSITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA VTSGFQNITQGVSNMIEAGEAAVKHFSSPRDKI-KEALGAEGLAKLQAASAGLQNNASIA **:***.*******************************

FIGURE 2. The alignment of amino acids of 22-kDa protein genes from seven *O. tsut-sugamishi* strains.

FIGURE 3. The phylogenetic trees for the ORFs of 22-kDa genes (*top*) and protein sequence (*bottom*).

strains compared to Karp strain were 98.02%, 93.07%, 86.14%, 86.14%, 84.65%, and 84.65% in AFSC7, 18-032460, Kato, TA763, TH1814, and MAK119, respectively, if insertions or deletions were excluded.

Phylogenetic trees were constructed using DNA sequences of the ORF (611 bp) and the translated protein sequences of 22-kDa genes by CLUSTALW method (Fig. 3a and b). The lengths of tree lines were proportional to the distances among strains. These distances were also labeled by bootstrap values after the strain names. Based on the DNA sequences of 22-kDa ORF (Fig. 3a), the strains of Kato and TA763 were grouped into the same cluster, while the strains of TH1814 and MAK119, and the strains of AFSC7 and Karp were grouped into two separate clusters. The distance of ORF between strains calculated in this method suggested that the most divergent strains were Karp and TH1814, while Kato and TA763 were the most closely related strains (Fig. 3a). The protein sequence of 22-kDa protein was analyzed by CLUSTALW 1.82 as well (Fig. 3b). Overall, the phylogenetic trees from DNA and protein sequences look similar. But in protein analysis, the 18-032460 instead of Karp was grouped into the same cluster with AFSC7 and the most divergent strains were 18-032460 and TA763.

DISCUSSION

O. tsutsugamushi isolates are antigenically heterogeneous.³ Therefore, the development of a multivalent vaccine against O. tsutsugamushi that provides heterologous

protection has been a major concern. The 22-kDa antigen gene, a possible scrub typhus vaccine component, was first cloned and expressed using the template from Karp strain. However, knowing the 22-kDa sequences from other strains is essential in determining the level of disparity that exists among the various strains of *O. tsutsugamushi*. In this study, we sequenced and analyzed 22-kDa genes from six *O. tsutsugamushi* strains. The results from DNA and protein sequence analysis provided the first sequence comparison and phylogenetic relationship among these *O. tsutsugamushi* strains based on the 22-kDa antigen. The data also extended the earlier findings of the 22-kDa gene from Karp strain and will be helpful in the design and development of scrub typhus vaccines.

The search of the BLAST database for the 22-kDa DNA or protein sequence did not retrieve any sequences with significant homology. There is no conserved domain found on this protein as well. Therefore, the function of this 22-kDa protein remains unknown. However, previous study² showed that native 22-kDa protein were reactive with immune serum against homologous strains. The recombinant Karp 22-kDa protein was recognized by polyclonal rabbit antibodies raised against whole-cell lysate. Moreover, the computational analysis of amino acid sequence revealed several potential T-cell epitopes on this protein and this recombinant protein induced a strong proliferation of a T cell line that produced IL-2 and IFN-γ.² All this information has strengthened the idea of including the 22-kDa protein as one of the protective antigens in multicomponent scrub typhus vaccine candidates. Therefore, we cloned the 22-kDa gene from O. tsutsugamushi Karp into a DNA vaccine plasmid VR1012 (pKp22) and evaluated its protective efficacy in a lethal-challenge mouse model. To our surprise, the preliminary results suggested that pKp22 not only did not provide any protection but it also inhibited the protective effect of other scrub typhus vaccine candidates (Ching and colleagues, unpublished data). We do not understand these results, however we still believe that the phylogenetic relationships based on the sequences of 22-kDa genes are very valuable in selecting O. tsutsugamushi strains to generate components for vaccine purpose. We are in the process of determining 22-kDa sequences from additional strains of O. tsutsugamushi.

[Competing interests statement: The authors declare that they have no competing interests.]

REFERENCES

- CHING, W.-M., H. WANG, C. EAMSILA, et al. 1998. Expression and refolding of truncated recombinant major outer membrane protein antigen (r56) of Orientia tsutsugamushi and its use in enzyme-linked immunosorbent assays. Clin. Diagn. Lab. Immunol. 5: 519–526.
- 2. HICKMAN, C.J., C.K. STOVER, S.W. JOSEPH & E.V. OAKS. 1991. Molecular cloning and sequence analysis of a *Rickettsia tsutsugamushi* 22 kDa antigen containing B- and T-cell epitopes. Microb. Pathog. 11: 19–31.
- 3. SEONG, S.Y., M.S. CHOI & I.S. KIM. 2001. *Orientia tsutsugamushi* infection: overview and immune responses. Microbes Infect. **3:** 11–21.